Abstract
Acute Lymphoblastic Leukemia (ALL) harboring the t(17;19)(q22;p13) is a rare subtype of leukemia with a dismal prognosis. This recurring translocation produces an aberrant TCF3-HLF fusion with distinct gene expression profiles and drug sensitivity. Recent studies have shown that this subtype of ALL might be targeted using therapies inhibiting BCL-2 and the pre-B cell receptor through inhibition of SRC family kinases. However, preliminary validation of these studies have revealed significant heterogeneity of response to BCL-2 and SRC inhibitors. As such, we sought to identify other possible targets that could overcome this heterogeneity and improve response to therapy.
Methods: One local as well as four other samples from the Children's Oncology Group's ALL Biorepository with TCF3-HLF ALL were expanded in immunodeficient NSG mice. All samples were verified by RT-PCR and Sanger sequencing for the fusion transcript. Samples were then interrogated with our functional drug screen that is comprised of compounds with activity against two-thirds of the tyrosine kinome as well as other non-tyrosine kinase pathways, including RAF/MEK/MAPKs, PI3K/AKT/mTOR, AMPK, ATM, Aurora kinases, CAMKs, CDKs, GSK3a/b, IKK, PKA, PKC, PLK1, and RAF as well as BCL2 family, BRD4, IDH1/2, Hedgehog, HSP90, NOTCH/g-secretase, proteasome, survivin, STAT3, and WNT/b-catenin. The samples were sequenced using the Agilent SureSelect Strand-Specific RNA Library Preparation Kit on the Bravo robot (Agilent). All five patient samples successfully engrafted into NSG mice and were tested for in vivo sensitivity as assessed for disease burden or survival.
Results: Three patient samples were identified to carry Type I translocations fusing exon 13 of TCF3 with variable intronic insertions followed by exon 4 of HLF. All three type I translocations produced different fusions due to different lengths within the variable region. One sample predicted a truncation product of TCF3 ending in exon 13 with an early stop codon within the variable region. Two patient samples carried the identical type II translocation fusing Exon 12 of TCF3 with exon 4 of HLF. RNA-seq results of the five samples identified other individual translocations, but none involved other specific disease related lesions. Results from our drug screen showed significant heterogeneity in response to the majority of drugs assayed including the ABL/SRC inhibitor dasatinib and the BCL-2 inhibitor venetoclax. Further, in vivo studies exposing cohorts of animals to vehicle (n=5), dasatinib (40mg/kg/day; n=5), venetoclax (25-100mg/kg/day; n=5) or combination of dasatinib and venetoclax (n=5) identified only two samples with treatment benefit. Interestingly, review of the results of the drug screen suggested hypersensitivity to aurora kinase inhibitors. Each sample was tested in vivo in cohorts of vehicle (n=5) and alisertib (30mg/kg/day; n=5). All five ALL samples showed significant response (p<0.01 for all five samples compared to their respective vehicle controls by Chi Square analysis). All animals tolerated treatment and no animal showed significant hematologic toxicity from treatment with drugs.
Conclusion: Our results suggest that TCF3-HLF ALL is a heterogeneous subset of ALL with both different gene expression patterns from TCF3-HLF to other fusions as well as functional drug response. In vivo validation in the murine model with these five samples suggests significant heterogeneity to current pursued targets such as BCL-2 and SRC compared to previously published reports. Most intriguing, all samples tested with alisertib identified significant in vivo response suggesting unique preclinical support to pursue further clinical testing within this rare and lethal subtype of ALL.
Leonard:Amgen: Research Funding. Mullighan:Loxo Oncology: Research Funding; Pfizer: Honoraria, Research Funding, Speakers Bureau; Amgen: Honoraria, Speakers Bureau; Abbvie: Research Funding; Cancer Prevention and Research Institute of Texas: Consultancy. Tyner:Takeda: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Array: Research Funding; Genentech: Research Funding; Incyte: Research Funding; Constellation: Research Funding; Aptose: Research Funding; Janssen: Research Funding; AstraZeneca: Research Funding; Gilead: Research Funding. Druker:GRAIL: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Research Funding; Leukemia & Lymphoma Society: Membership on an entity's Board of Directors or advisory committees, Research Funding; Patient True Talk: Consultancy; Fred Hutchinson Cancer Research Center: Research Funding; ARIAD: Research Funding; Beta Cat: Membership on an entity's Board of Directors or advisory committees; Oregon Health & Science University: Patents & Royalties; McGraw Hill: Patents & Royalties; Novartis Pharmaceuticals: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; ALLCRON: Consultancy, Membership on an entity's Board of Directors or advisory committees; MolecularMD: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Henry Stewart Talks: Patents & Royalties; Blueprint Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Monojul: Consultancy; Celgene: Consultancy; Third Coast Therapeutics: Membership on an entity's Board of Directors or advisory committees; Aileron Therapeutics: Consultancy; Aptose Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Cepheid: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millipore: Patents & Royalties.
Author notes
Asterisk with author names denotes non-ASH members.